Snarepins Are Functionally Resistant to Disruption by Nsf and αSNAP
نویسندگان
چکیده
SNARE (SNAP [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein] receptor) proteins are required for many fusion processes, and recent studies of isolated SNARE proteins reveal that they are inherently capable of fusing lipid bilayers. Cis-SNARE complexes (formed when vesicle SNAREs [v-SNAREs] and target membrane SNAREs [t-SNAREs] combine in the same membrane) are disrupted by the action of the abundant cytoplasmic ATPase NSF, which is necessary to maintain a supply of uncombined v- and t-SNAREs for fusion in cells. Fusion is mediated by these same SNARE proteins, forming trans-SNARE complexes between membranes. This raises an important question: why doesn't NSF disrupt these SNARE complexes as well, preventing fusion from occurring at all? Here, we report several lines of evidence that demonstrate that SNAREpins (trans-SNARE complexes) are in fact functionally resistant to NSF, and they become so at the moment they form and commit to fusion. This elegant design allows fusion to proceed locally in the face of an overall environment that massively favors SNARE disruption.
منابع مشابه
A Membrane Fusion Protein αSNAP Is a Novel Regulator of Epithelial Apical Junctions
Tight junctions (TJs) and adherens junctions (AJs) are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive fa...
متن کاملThree αSNAP and 10 ATP molecules are used in SNARE complex disassembly by N-ethylmaleimide-sensitive factor (NSF).
The fusion of intracellular membranes is driven by the formation of a highly stable four-helix bundle of SNARE proteins embedded in the vesicle and target membranes. N-Ethylmaleimide sensitive factor recycles SNAREs after fusion by binding to the SNARE complex through an adaptor protein, αSNAP, and using the energy of ATP hydrolysis to disassemble the complex. Although only a single molecule of...
متن کاملSNARE priming is essential for maturation of autophagosomes but not for their formation
Autophagy, a unique intracellular membrane-trafficking pathway, is initiated by the formation of an isolation membrane (phagophore) that engulfs cytoplasmic constituents, leading to generation of the autophagosome, a double-membrane vesicle, which is targeted to the lysosome. The outer autophagosomal membrane consequently fuses with the lysosomal membrane. Multiple membrane-fusion events mediat...
متن کاملKinetic barriers to SNAREpin assembly in the regulation of membrane docking/priming and fusion.
Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far to...
متن کاملHypothesis – buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission
Neural networks are optimized to detect temporal coincidence on the millisecond timescale. Here, we offer a synthetic hypothesis based on recent structural insights into SNAREs and the C2 domain proteins to explain how synaptic transmission can keep this pace. We suggest that an outer ring of up to six curved Munc13 'MUN' domains transiently anchored to the plasma membrane via its flanking doma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 149 شماره
صفحات -
تاریخ انتشار 2000